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An analytical solution is obtained of the following contact problem: a piezoelectric actuator in the form of a thin infinite strip, 
placed on the surface of an elastic half-space, performs oscillations due to the action of an electric load, which excites surface 
and bulk waves. The behaviour of these waves at all points of the elastic body, and also the stress-strain state of the piezoelectric 
actuator, are investigated. As an example, a numerical calculation is made of the displacements of the acoustic waves of an elastic 
half-space of steel, excited by a piezoelectric actuator made of PZT-5 piezoelectric ceramics, and the stress-strain state of the 
piezoelectric actuator is also calculated. It is shown that the amplitudes of the surface and bulk waves depend very much on the 
oscillation frequency. The attenuation of acoustic waves with distance from the oscillation source both in the depth of the body 
and on its surface is investigated. �9 2005 Elsevier Ltd. All rights reserved. 

In an isotropic elastic medium having a boundary, surface waves can propagate in addition to longitudinal 
and transverse (shear) waves [1-5]. The displacement of the surface wave, which satisfies the conditions 
that there should be no mechanical stresses on the free surface of the body, contains both longitudinal 
and transverse components. The surface waves propagate over the surface without attenuation. They 
penetrate only a small depth into the body as a consequence of the rapid attenuation. 

In the majority of publications devoted to a acoustic waves (see, for example, [6-8]), a solution of 
the homogeneous problem is constructed, just like Rayleigh did. As a result only the velocity, wavelength 
and wave numbers are found, but the amplitude values of the required quantities are not determined. 
The determination of the amplitude values is a complex problem even in the simple case, for example, 
when a concentrated force acts on the surface of the elastic half-space [2, 9]. 

1. F O R M A T I O N  O F  T H E  P R O B L E M  

We will solve the following contact problem: a piezoelectric actuator in the form of a thin infinite strip 
is placed on the surface of an elastic half-space. The actuator executes oscillations due to the action of 
an electric load, which excites surface and body waves in the elastic medium. 

In order to simplify the complex contact problem, we will make certain obvious assumptions regarding 
the electroelastic state of the piezoelectric actuator. 

The complete problem, taking into account the assumptions made, can be separated into the problem 
for the piezoeletric actuator and the sum of the auxiliary problems for the elastic half-space. The solution 
of the simplified system of equations for the piezoelectric actuator is sought in the form of Fourier series. 
To solve the auxiliary problems for the elastic half-space an integral Fourier transformation is employed. 
The integrals thereby obtained are reduced to a form convenient for calculations by the method of 
functions of a complex variable. The complete solution of the elastic half-space is written as the sum 
of the solutions of the auxiliary problems. The solutions of the problems for the piezoelectric actuator 
and the elastic half-space contain unknown constants, which ensure that the contact conditions are 
satisfied. It should be noted that the solution obtained enables one to determine all the required 
quantities of the contact problem, including their amplitude values. 

tPrikl. Mat. Mekh. Vol. 69, No. 5, pp. 882-895, 2005. 
0021-8928/S--see front matter. �9 2005 Elsevier Ltd. All rights reserved. 
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2. T H E  P R O B L E M  F O R  A P I E Z O E L E C T R I C  A C T U A T O R  

In Fig. 1 we show a piezoelectric actuator (PA) in the form of a thin infinite strip and an elastic half- 
space in Cartesian system of coordinates. It is assumed that the piezoelectric actuator, made of 
piezoelectric ceramics polarized in the thickness direction, has a width 2/, a thickness t and is infinite 
in the x2 direction. The piezoelectric actuator performs harmonic oscillations due to the action of an 
electric load, applied to the electrodes, which cover the end surfaces of the piezoelectric actuator 
x3 = 0 andx3 = t. The electric load varies harmonically with an angular frequency of oscillation co, and 
hence all the equations can be written in terms of the amplitude values of the required quantities. The 
solution of the contact problem is independent of the x2 coordinate, since the piezoelectric actuator is 
infinite in the x2 direction. 

The system of equations describing the piezoeletric actuator in terms of amplitude values consists 
of the following [10, 11] (below we only give those equations which will be used to solve the contact 
problem formulated above) 

the equilibrium equations 

Oli, l + a i 3 , 3 + p t ,  o~2ui = O, i = 1,3 (2.1) 

the equations of state 

1 (e k + v e . )  - s13 d31 s12 
~kk = stt(1-Vp) [ ~33j E 3, vp = - -T  e z P slet (1 - v p )  stl sf~ ( 1 - vp) 

(2.2) 

E 
D 3 = E33E 3 + d31((311 + 022) + {d33a33} (2.3) 

and relations connecting the strains and the displacement 

e k = Uk, k ,  e 2 = 112, 2 -- 0 (2.4) 

The component E 3 of the electric field vector is related to the electric potential ~ by the formula 

E3 = --'~.3 (2.5) 

Here k ~ n and k = 1, 2. 
The following electric potential is specified on the electrodes of the piezoelectric actuator 

r = - V ,  ~[x,=, = +V (2.6) 
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In Eqs (2.1)-(2.5) oaa, 022, 013 and 0.33 are the stresses, D 3 is the component of the electric induction 
vector in the x3 direction, S~l, s e and s~ are the elastic compliances for zero electric field, d31 and d33 

are the piezoelectric constants and and e~'3 is the permittivity for zero stresses. 
We will solve the class of problems in which: 
(1) the piezoelectric actuator is thin (its thickness t is considerably less than its width 2/(t ~ 21)), 
(2) the wavelength in the elastic medium is an order or more greater than the width of the piezoelectric 

actuator (this means that the variability of the stress-strain state of piezoelectric actuator along the Xl 
coordinate is small). 

For the case considered, the problem can be simplified as a result of the following hypotheses. 
1. The stresses 0.33 are considerably less than the stresses Ola and 0.22, and hence we can neglect 033 

compared with 0.11 and 022 in Eqs (2.2)-(2.3). 
2. The displacements Ua and u3 are constant along the thickness (the displacements change so slowly 

along the x3 coordinate that we can assume that they are independent of x3). 
3. E 3 is independent of x3. 
If these hypotheses are not satisfied, this method of solving the problem is useless. For example, if 

the wavelength of the acoustic waves is of the same order or less than the thickness of the piezoelectric 
strip, the first hypothesis is not satisfied. If the surface of the elastic half-space is completely covered 
with a piezoelectric layer, which is an unbounded piezoelectric medium, in this special case the stresses 
033 are not small compared with 0.11 and o22, and it is easy to obtain a simple analytical solution of the 
problem which is qualitatively different from that investigated here. 

The above hypotheses are not new. The first and second hypotheses are generally employed, beginning 
with Kirchhoff, for any thin layer having small variability along the xa and x2 coordinates. All the hypo- 
theses are usually used for thin-walled piezoelectric strips and sensors. The correctness of the hypotheses 
is confirmed by numerous experiments [11, 12]. Moreover, the hypotheses have been confirmed by an 
asymptotic analysis [13]. 

Using the first and second hypotheses, in Eqs (2.2)-(2.3) we must neglect the terms enclosed in the 
braces. 

It follows from the third hypothesis and Eq. (2.5) that the electric potential is a linear function of 
the thickness coordinate x3, while E3, taking condition (2.6) into account, can be expressed in terms of 
V as follows: 

E 3 = -2VIt (2.7) 

Since Ul, el, and E 3 are  independent of the variable x3, it can be seen from Eqs (2.2)-(2.4) that ola 
and D 3 are  also independent for x3 and are functions solely for xa. 

Integration of Eqs (2.1) with respect to x3 and satisfaction of the conditions for there to be no stresses 
on the surface x3 = t 

0"13 ----- 0, 033 = 0 (2.8) 

leads to the following formulae for the stresses 0.13 and 033 

tYl3 = (0.11,1 + p p ~ 2 u l ) ( t - x 3 )  (2.9) 

2 2 2 
0.33 = (0.11, 11 + Op t/) Ul, 1)(( / + X3)/2 -- tX3) + ( t  -- X3)PpO)2U3 (2.10) 

In order to solve the problem in terms of Fourier series, we must extend the electric load E3, as a 
periodic function of xl in the interval [-L, +L] (L > 2/) 

[E3, Ixd <-I 
F(xl) = I f (x t ) ,  l<[xl l<Z- l ;  

L-e3, L-l<-lxll <-L 

+L 

I F(Xl)dX = 0 
-L 

(2.11) 

The function f(xl) is chosen so that the function F(Xl) is continuous in the section [-L, +L]. 
Note that function can be extended by any method which ensures rapid convergence of the solution. 
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The extended function E 3 must then be expanded in a Fourier series (everywhere henceforth 
summation over n is carried out from n = 1 to N) 

+L 

E3 = E~ncosanxl, ~n = F(xl)c~ an = "-~ 

n -L 

(2.12) 

All the required quantities for the piezoelectric actuator will be sought in the form of trigonometric 
series 

Ul = ~ , U l n s i n a n x l '  u3 = Eu3ncOSanxl 
n II 

or, = EO,l:osa.x,. o,3 = Eo,3:ina.x,. o33 = Eo33.cosa.x, 
n n n 

(2.13) 

3. T H E  P R O B L E M  F O R  A N  E L A S T I C  H A L F - S P A C E  

The complete system of equations describing the elastic half-space x 3 < 0, includes the equilibrium 
equations (2.1), formulae connecting the strains and displacements, and Hooke's law. 

To solve the problem we will use the method proposed by Lamb for the case of concentrated forces, 
applied at a point of the surface of the elastic body [2, 9]. 

Following Lamb, we will write the equilibrium equations in displacements (everywhere henceforth 
i =  1,3) 

(~, + I.t)O i + ~ t V 2 u i  + p t o 2 u i  = 0 (3.1) 

where 

vE E (3.2) 
O = ul, l+U3, 3, k = ( I + v ) ( I - 2 v ) '  ~t - 2 ( l + v )  

(V 2 + h 2 ) t p  = O, (V 2+k2)~1/ = 0 

Oil = l a ( - k 2 ~ - 2 ~ . 3 3 + 2 u  

033 = ~ t ( - k E t p - 2 1 P , l l - 2 ~ , 1 3 ) ,  031 = l a ( - k E ~ l / - 2 ~ , i l + 2 t P , 1 3 )  

(0 is the relative volume deformation, and ~. and kt are the Lam6 coefficients). 
Hooke's law can be written in the form 

Oii ---- ~ , ( e l + e 3 ) + 2 1 , t e i ,  031 = ~te31, ei  = ui, i, el3 = Ul ,3+u3,1  (3.3) 

The functions tp and W, related to the displacements, are introduced in the usual way 

Ul = ~,1 + ~1/,3' U3 = 1~,3 -- II/,l (3.4) 

The equilibrium equations and the formulae for the stresses, expressed in terms of the functions r 
and ~ can be written as follows: 

(3.5) 

(3.6) 

h2 to2 k2 to2 ff~, + 21~, 
= - -~ ,  = ---~, c L = C r = 

C L C T P 

(3.7) 

where CL and CT are velocities, and h and k are the wave numbers of the longitudinal and transverse 
waves respectively. 
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To solve the problem we will use a Fourier integral transformation with respect to the variable xl 

1 I -i{~,. 1 I -i{x,.  tp* = ~-~ ~e ax I , ~ *  = ~/e ax 1 (3.8)  

Since the x3 axis is directed from the elastic half-space (Fig. 1), the solution in the elastic half-space 
must decrease as x3 decreases, and hence the solution is taken in the form 

Ae , u  = Be ~3 (3.9) ~)~ ~-. Ux3 

where a and 15 are positive real quantities, which ensures that the stress-strain state of the elastic body 
decreases with distance from the source of oscillations into the depth of the body. 

In order to obtain the quantities ct and 15 we must carry out the integral transformation (3.8) in 
Eqs (3.5) and substitute expressions (3.9) into them 

�9 2.1/2 a = ( { 2 - n )  , 15 = ({2-k2)U2 (3.10) 

As a result of using the Fourier transformation, Eqs (3.4) and (3.7) take the form 

u~ = i~.~Ae ax3 + 15Be ~''3, u~ = txAe ~ i~Be ~x3 (3.11) 

2 2 I~x3 0-~3 = g((2~2-k2)Ae~tX3-2i~15Be~X3), 0-~3 = g((2~ - k  )Be -2i~txAe a~3) (3.12) 

The arbitrary constants A and B are found from the condition for the piezoelectric actuator and the 
elastic half-space to be in contact in the x3 = 0 plane. 

In Section 2 the electric load E 3 is extended as a periodic function of the variable xl into the interval 
(--0% +oo) (2.11) and is expanded in a Fourier series (2.12). The remaining required quantities of the 
piezoelectric actuator are also written in the form of Fourier series. The problem for an elastic half- 
space is solved using an integral Fourier transformation. For the integral transformation of the stresses 
0"33 and 0-31 we take into account these equality of these stresses, corresponding to the stresses of the 
piezoelectric actuator (2.13) in the contact area, and the fact that they are zero on the remaining surface 
of the elastic body. A similar method is used in hydroacoustics to solve the problem of the oscillations 
of a hinged cylindrical shell of finite length, immersed in an infinite liquid [14]. 

In order to solve the contact problem, we will first solve two auxiliary problems. In the first auxiliary 
problem only a normal surfaces load 033 = cosa~l  acts on the surface of the elastic half-space in the 
contact area with a piezoelectric actuator, while in the second problem only a shear load 0-31 = sinai1 
acts in the contact area. 

The first auxiliary problem for an elastic half-space. We will assume that the normal stresses are 
specified in the contact area on the surface of the elastic half-space, while the remaining part of the 
surface is stress-free 

0-331x3=0 = x3 ,  0- -Ix3=0 = 0, x3  = c o s p x . ,  p = a n = nTt / l ,  [ x l ]<_ l  

0-331x =0 -- 0, 0-'1 3=0 -- 0,  Ixd > l  
(3.13) 

Conditions (3.13), as a result of the Fourier transformation, 

o'31x3=0 x ;  0-1"31x3 -- 0, x *  = ' - = = o -~--~(f2 (~) + fF( -~) )  (3.14) 

where 

fl-+(~) = exp(i(p + ~) l l (p  + ~)) + exp(-i(p - ~) l l (p  - ~)) (3.15) 
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and taking formulae (3.12) into account, can be rewritten in the form 

(2~ 2 -  k2)A - 2 i ~ B  = XA,  2 i ~ a A  + (2~ 2 -  k2)B = 0 (3.16) 
!1 

The constants A and B are defined as the solution of system (3.16), after which the displacements 
are found by applying an inverse Fourier transformation to expressions (3.11) 

+** X* i .2,  ax3 ~ n 13x3,~ 3 i~xlee 
u I = ~ f [ (2~2-x  )e - z a p e  iF---~e ag 

o o  

+~ X* i ..,~2 ~lx3.a 3 i~x , , r  
u 3 = ~ f [(2~2-k2)e ~x3-zq e I F ~ e  a~ 

(3.17) 

The quantities a and 13 are found from formulae (3.10), where F(~) in Rayleigh's function 

F(~) = (2~2-k2)2-4~2a13 (3.18) 

Integrals (3.17) differ from the well-known solution for the case of a concentrated load, applied at 
a point of the surface of an elastic-space [9], by the factors X~3 in the integrand. However, in formulae 
(3.17) we have taken into account the dependence on the x3 coordinate (in [9] formulae were obtained 
for the displacements on the surface of an elastic body). As in [9], the integrals (3.17) are transformed 
by choosing an appropriate contour of integration in the complex plane 4 = ~ +/11. The integrals (3.17), 
in exactly the same way as in [9], have two poles 4 = ___~c, which are the roots of the Rayleigh equation 

F(q) = 0 (3.19) 

where z > k, and, in exactly the same way as in [9], four branching points 4 = _h,  ~ = ___k due to the 
presence of the radicals (42- h2) 1/2 and (42- k2) 1/2 in expressions (3.18) and (3.10), and, moreover, two 
poles 4 = - P  of the factor X~3. The transformation of the integrals (3.17) is omitted here since it is 
similar to the well known transformations in [9]. 

The area of contact of the piezoeletric strip with the elastic body Ix1 ] < I and the region outside the 
contact area Ixll > I must be considered separately. 

As a result of the transformations, the integrals (3.17) can be reduced to the form 

u(tn) i H(n) e-irxl i -(n) -ipxl 
= ~-~ 1 + ~ - ~ t "  1 e + i l ~ l ) + i I ~  ) 

u~n) i ~.(n) - i ~  i ~(n) -ipxl ,.,y(n) 1.(n) 
= --~'~lk I e -- "~I e - Zlk3 -- ~1h4 

(3.20) 

Here 

l(n) = 1 -igxt ~ gm rc-"~ e R~) e-BXldrl, 
0 

g = k ,h ,  m = 1 ,2 ,3 ,4  

T I ( ~ ,  13~r T2(0~1r 13~) 
zs ( -K)  el QI ") I 
F'(K) ' Tl(0t p, 13p) T2(Otp, 13p)  F ( p )  (3.21) 

R(, Tl(a, Z = ~)2F2(q) 3(~)[~=-k+iB' 

R~ n) = - T 2 ( 1 3 , 0 ~ ) ~ Z 3 ( q ) l q = _ k + i r p  

") = T2(a, 13) z3( ) =-h+.l 

") (13, 
= TI 4 F  '~"~ ~'"'l 
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where 

Tl(ixg, ~g) = g[O(g)e  %x3- 2ixg~gefJ*x~], T2(ixg, [~g) = Ixs[~(g)e%X3- 2g2e ftgx 

~1 (IX, [3) = 4~20(~)e  ax3- F(g)e -fix3- F l(g)e f~x3 

T2(IX, ~) = Fl ( g) ec~x3 - F( g) e-ax3 - 4~(g)ixI 3el~x3 

O(g) = 2g2-k2'  Ixg = (gZ-h2)lt2' [~s = (g2-k2)lr2' g = K,p 

F(g) = ~2(g)_492ix[3, FI(q ) = ti)z(g) + 4g2ix[~, F2(g ) = F(g)Fl(g ) 

F'(q) = 8gtl)(q) - 8qixIi - 4q 3 + 

(3.22) 

In formulae (3.20) and (3.21) we must put 

Z3(q) = fF(~)  when [xll _< l, x 3 < 0 (3.23) 

P(1 ") = 0. Q~") = 0, Z3(g) = fU(~) + f F ( - ~ )  when x I > l, x 3 _< 0 (3.24) 

The second auxiliary problem for an elastic half-space. The following stresses are specified on the 
surface of the elastic bodyx 3 = 0: 

O331x3= 0 = 0, O,31x3= 0 = X,3, X13 = s inpx  l, Ix,l<-I 
~331x3_0 ~. 0, 0131x3= 0 = 0, ]Xl] > 1 

(3.25) 

In exactly the same way as in the previous case, the use of a Fourier transformation leads to the 
following formulae 

o'31x3=O = O, ~ 3 =o = X~'3, X~'3 = l ( f~+(~)_f~+(_~) )  (3.26) 

The function f~+({) is a defined by formula (3.15). 
From the conditions in the x3 = 0 plane we obtain 

(2~ 2 -  k2)A - 2 i ~ B  = O, 2i~ixA + (2~ 2 -  k2)B = X~'3 (3.27) 
~t 

The constants A and B are defined as the solution of system (3.27), after which the displacements 
are found by applying an inverse Fourier transformation to expressions (3.11) 

§ X* 1 f .~e.2 .2.  13x3.[~ 13 i~xl re_ 
=_uJ ( -2~2eaX3+tzq  - x ) e  )F---~e ag u I 

+~ X* i .2 .  [~x3.~ 13 i~Xlce" U3 ~ ~ (2IX~ e~x3- (2~ 2 = - r  )e )F---~e aq 

(3.28) 

Integrals (3.28) can be converted to the following form, more convenient for calculations, 

u~n) _ i H(n) e-iK~, i ~(n) -ipx, i . (n)  , , . . (n)  
2gt 2 ~ 1 "  2 e -- ~Jkl -- ZdJh2 

u~") 1K( . )e - i~x ,  1 - ( . ,  -'px, +.t~i) + s~4> 
= 21.t 2 + ~ ' ~ d 2  e 

(3.29) 
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Here 

1 -ig*, I ~,e-..,dll. j ( n )  = ~ e  S 
- g ,n ltla 

0 

g = k , h ,  m =  1,2 ,3 ,4  

H(2 n ) K(~) ZI (_1() p~n) Q~n) 1 

T2(~r, @r) - r l (~ t ,  or)  - F'(~:) ' r2(~p , OLl, ) = Tl(~t,, Cry) - F(p)  (3.30) 

2 I R)I3~ z (.)1 , s~ "~ = y~(a, 1 3 ) ~ z ~ ( g )  

go(q) 
Sg n) = Y2(~, ~)A-'-~'7-~Zl(g) , S(4 n) = ~11(~, o [ ) ~ Z l ( g )  

"wcgl,~]2 ~ g = - k + i B  " r  ~ g = - h + i q  

We have used the notation of (3.22). 
In formulae (3.29) and (3.30) we must put 

Z~(q) = fl*(~) when Ix,I <l ,  x3-<0 (3.31) 

Pt2") = 0, Q~) = 0, Z t(q) = ~*(~) - 12*(--~) when x, > l, x s < 0 (3.32) 

Thus, we have obtained solution describing the propagation of waves in the positive direction of the 
Xl axis. Formulae for waves propagating in the opposite direction can be written by analogy. 

4. T H E  C O N D I T I O N S  FOR CONTACT B E T W E E N  THE 
P I E Z O E L E C T R I C  STRIP  AND THE E L A S T I C  H A L F - S P A C E  

We will assume that the conditions for ideal contact between the piezoelectric strip and the elastic body 
in the contact area Ix11 < l, x3 = 0 are satisfied; they can be written in the form 

a $ @ $ o $ a $ 

Ul = UI' U3 = U3' ~13 = ~13' (~33 = C33 (4.1) 

The superscripts a or s show that the quantity belongs to the piezoelectric strip or to the elastic half- 
space respectively. 

We will consider the solution of the problem for an elastic half-space in the contact area. 
Waves propagate in opposite directions from any point of the contact area Ixll -< t, x3 -- o. The 

solutions obtained for the auxiliary problems describe waves propagating in the positive xl direction. 
In order for the contact conditions to be satisfied, we must bear in mind the displacements and stresses 
of the waves propagating in the negative direction. With this aim in mind the formulae for the 
displacements in the contact area for each value of n = 1, 2 . . . . .  N will be written taking into account 
the evenness of the functions u(3")(Xl) and the oddness of the functions U~l")(Xl) 

' " '  , - ,  = = u l+(+xO-uz_( -xr ) ,  u~"~(xl) (4.2) 

The subscripts plus or minus indicate that a displacement belongs to a wave propagating in the positive 
or negative direction of the Xl axis respectively. 

We will assume that the calculation of the auxiliary problems (Section 3) has been carried out. This 
means that displacements of the elastic body u~+ ~ and u~+ > have been calculated in the section Ixll -< l 
for any n from 1 to N. The formulae for waves propagating in the negative direction of thexl axis, are 
w)-i, tte~a by anaJQgyy(ith formulae (3.20)-(3.24) and (3.29)-(3.32). The combination of the displacements 
u~+ ~, u~+ ) and d~)_, u ~  according to formulae (4.2), gives the total displacements in the contact area. The 
total displacements calculated in the interval Ixl < l can then be extended and expanded in Fourier 
series in the same way as was done for E 3 (formulae (2.11) and (2.12)). The Fourier series for the total 
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displacements are represented in the following form (the summation over n is carried out from n = 1 
to N, and the summation overj is carried out fromj = 1 to N): 

for the first auxiliary problem 

,]n)= y~pjnsinajxl, u~n)= EqjnCOSajx ' (4.3) 
J J 

for the second auxiliary problem 

uCl") = y y j ,  sinajxl, u~n)= •z j ,  cosajx I (4.4) 
J J 

The complete solution of the problem for an elastic half-space is equal to the sum of the solutions 
of the auxiliary problems, multiplied by the unknown constants An and Bn, 

u~ = E y~(A .p j .  + B.yj . )s inajx, ,  u; = XE(A.qj. + B.zj.)cosajx, 
n j  n j  

033 = lCOSanXl,  O13 = nSinanXi  
t l  n 

(4.5) 

The constant An and Bn are found from the conditions for the piezoelectric strip to be in contact 
with elastic half-space. 

We must then convert the formulae for the stresses of the piezoelectric strip in the contact area. 
In the contact area ([Xll < l) the displacements of the elastic body are equal to the displacements 

of the piezoelectric strip. According to the second hypothesis (Section 2), the displacements of the 
piezoelectric strip do not change over the thickness, and hence the formulae for displacements of the 
elastic body in the contact area (4.5) will henceforth be used to determine the stresses of the piezoelectric 
strip. 

The stress 41 can be expressed in the terms of the displacement by substituting expressions (4.5) 
into relation (2.4) and then into (2.2), taking formulae (2.12) into account. We obtain 

( I l l a  $1EI( | ' I ' 2 " E I a j E ( A n p j n + B n y j n ) - d 3 ' ( I + v p ) o p j ]  j [_ n (4.6) 

The formulae for the stresses 43 (2.9) and 43 (2.10) can be written in terms of the displacement 
using Eqs (4.6) 

013 = )~j (AnPjn + BnYjn)  + (PjCj s i n a j x l  
j L n  

a E [ E (  t ) ] 033 = ~)~jaj(AnPjn + BnYjn ) + tp(oE(Anqjn + BnZjn ) + Oj~j cosajx 1 
n I -  n 

(4.7) 

z ) S~l(1 -Vp )r 

Xj t ppO 2 a j  td31a j 
= E - - -  2 ' Cpj = . . . . . .  

Sll(1 -Vt,) 

2 2 t d31aj 
= Cj 

Oj 2Slel(1 -vp)  

Equations (4.7) describe the stresses 43 and ~33 of the piezoelectric strip in the region where it is in 
contact with elastic half-space. Equations (4.5) give the same stress of the elastic half-space. According 
to the last two contact conditions of (4.1) they must be equal. 

The system of equations in the constants A1 . . . . .  A s  and B1, ... , BN is obtained by substituting 
expressions (4.7) and (4.5) into the last two conditions of (4.1) and equating coefficients of the like 
trigonometric functions. They contain 2N equations and 2N unknown constantsA1 . . . . .  AN, and B1 . . . . .  
BN. After reduction, this system reduces to the following more convenient form 
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~ ( g j . A .  + b j . B . )  = ~j, ~ ( c j . a . + r j . B . )  = Oj (4.8) 
n 

Here 

gj .  = ~jPj . ,  bin = ~jYjn + ~jn, 

taj 2 
cj ,  = - -~-ZjPjn - tpto qjn + 8in, 

0, j * n  

~ij. = 1, j  = n 

taj 
r jn = - --~ ~ jY jn - tPCOZZ j ,  

(4.9) 

After calculating the constants A 1 . . . .  , A N and BI . . . . .  BN all the required quantities can easily be 
obtained from the previous formulae: the displacements and stresses in the region [xl [ -< l, x3 = 0 can 
be calculated from formulae (4.5) and when x3 < 0 they can be calculated as the sum of the solutions 
of the first and second auxiliary problems, multiplied by the constants A1 . . . . .  AN and B1, . . . ,  BN. 

It should be noted that the solution obtained for the piezoelectric strip and the elastic half-space 
holds everywhere with the exception of a small neighbourhood of the points Xl = +__l, x3 = 0, where the 
solution has a singularity. These singular stress-strain states are localized in a small neighbourhood of 
the singular points and attenuate very rapidly with distance from them. Methods which enable the 
singular solutions to be obtained are well known (see, for example, [15, 16]). 

5. N U M E R I C A L  E X A M P L E  

As an example we will consider an elastic half-space of steel, oscillations of which are excited by a 
piezoelectric strip of PZT-5 piezoelectric ceramics of thickness t = 0.001 m and width 2 / =  0.02 m. 

The electric load E 3 in the contact area is given by formula (2.7). As noted above, the quantity E 3 
can be extended in different ways. Here it is taken in the form of a periodic function with period 
2L = 8l 

-1, O<Xl<l 

= 2.._VVl-((x~tl- 1) 2 -  1), 

E3 t { ( ( x l ] t _ 3 ) 2  1), 

L1, 31<x l <41 

l < x  1 <-21 

21<x I <31 
(5.1) 

The Fourier series for function (5.1) has the form 

. ~ . ~  = (-1)n+ 1128~ _ cos(2n 1)~.] 
E 3 = -  ~ . - l c ~  ~2n-I (2n_1)3 3 4 ' a2n-I = - -  

n=l 

(2n-  l)g 
L 

The displacements -1+" (n) and u(3n+ ) of the waves propagating in the positive direction of the x 1 axis are 
calculated from formulae which give solutions of the first and second auxiliary problems. The total (n) (n) displacements in the contact area Ua and u3 are found from formulae (4.2) as a linear combination 
of the displacements u~+ ), u~+ ~, u]'__ ) and u~  ) of waves propagating in the positive and negative directions 
of the Xl axis. The total displacements can be extended as follows: 

[u~ n)(xt), 0 < x  l < l  

u(] n) = tu(]n)(l), l < x l S L - 1  , 

[ u ] n ) ( L - x , ) ,  L - I < x l < L  

')(xt), O<xt<l 

u~ ") = t (2 -x l l l )u~n) ( l ) ,  l < x  1 < L - I  

[u~n)(L-x,),  L- I<-xI  <-L 

(5.2) 

It should be noted that the method of continuation of the functions (5.2) must be chosen so as to 
ensure rapid convergence of the solution in the form of Fourier series. 
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After this the following steps are carried out: the coefficients Pin, qjn, Y;n, Zjn of Fourier series (4.3) 
�9 t 

and (4.4) are calculated. They are then substituted mto system (4.8) from whtch we then find the unknown 
constants A1,  . . . ,  A N and B1, . . . ,  BN. In the special case considered the constants A n and Bn are as 
follows: 

A 1 = 0.917x1012, A 3 = -0.691x1012, A 5 = 0.427x1012, A 7 = -0.217x10 II 

B I = 0.920x1013, B 3 = -0.578x1013, B 5 = 0.226x1013, B 7 = -0.929x10 ~1 
(5.3) 

It can be seen that the solution obtained converges and the coefficientsAn are considerably less than 
B n. This means that the shear load in the contact area plays the main role in exciting acoustic waves, 
while a normal load of the same value produces displacements and stresses an order of magnitude less. 

The results of a calculation are shown in the form of graphs in Figs 2-6 for quantities with a tilde, 
which are defined by the following formulae 

E E 
t~li = (~i3511 ~ 0 1 1 5 1 1  f i i -  Ui (5 .4 )  

Vd31' Oil = Vd31, Vd31 

In Fig. 2 we show the distribution of the amplitude values of the stresses o13 (the dashed curve), ~33 
(the thin curve) ~11 and (the thick curve) in the contact area Ix1[< l. In Section 2 we assumed the 
hypothesis that the stresses 611 are considerably greater than the stresses o33- The hypothesis is only 
used in the equations of state. The results of a calculation of the stresses from the equilibrium equations 
confirm this hypothesis. 

In Fig. 3 we show how the displacements of the longitudinal bulk waves (a) and the shear bulk waves 
(b) attenuate with distance from the source of oscillations on the body surface along the Xl axis, where 
the thick curves the displacement ~3 and the thin curves show the displacements ~1. 

The graphs in Fig. 4 show how the amplitude values of the displacements ~3 (a)  and ul (b), which 
are the sum of the displacements of the surface and bulk waves, depend on the Xl coordinate outside 
the piezoelectric strip. The thick curves show the displacements on the surface of the elastic body 
(X 3 = 0), and the thin curves show the displacements at a distance of x3 = 0.06 m from the body surface. 
It can be seen from Fig. 4 that at a distance of greater than 0.1 m from the piezoelectric strip along the 
surface of the elastic body the waves become almost periodic functions, i.e. the bulk waves attenuate 
and only the surface waves remain. 

Figure 5 shows the attenuation of the maximum values of the displacements of the surface waves u3 
(the thick curve) and ul (the thin curve) deep into the body. 

In Fig. 6 the maximum values of the displacements U3 of the surface waves are represented as a 
function of the oscillation frequency of the piezoelectric strip. It can be seen that for the same intensity 
of the electric load the displacements depend considerably on the oscillation frequency. There are several 
maxima in the frequency range investigated. One of them occurs at an angular frequency of the 
oscillations of 78 kHz. Graphs 2-5 were drawn for this frequency. 
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6. CONCLUSION 

We have proposed a method of constructing an analytical solution of the dynamic contact problem for 
a piezoelectric strip and an elastic half-space. The analytical solution obtained enables all the required 
quantities to be found, and enables the electroelastic state of piezoelectric strip and the propagation 
of acoustic waves in an elastic half-space to be investigated. 

The proposed method of solution was demonstrated by a numerical example, and as a result of the 
calculation the displacements and stresses of the piezoelectric strip and of the elastic half-space were 
obtained both on the body surface and at internal points of the body; the maximum amplitude values 
of the displacements of the surface waves as a function of the oscillation frequency of the piezoelectric 
strip were analysed. It was shown that these displacements reach a maximum at a definite frequency; 
the distance from the source of oscillations at which body waves attenuate and only surface waves remain 
has been estimated and the attenuation of the waves with distance from the source of oscillations deep 
inside the body has been investigated. 
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